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SUMMARY

In experiments involving many variables investigators typically use multiple
comparisons procedures to determine differences that are unlikely to be the re-
sult of chance. However, investigators rarely consider how the magnitude of the
greatest observed effect sizes may have been subject to bias resulting from multi-
ple testing. These questions of bias become important to the extent investigators
focus on the magnitude of the observed effects. As an example, such bias can
lead to problems in attempting to validate results if a biased effect size is used to
power a follow-up study. Further, such factors may give rise to conflicting find-
ings in comparing two independent samples — e.g. the variables with strongest
effects in one study may predictably appear much less so in a second study. An
associated important consequence is that confidence intervals constructed using
standard distributions may be badly biased. A bootstrap approach is used to es-

timate and correct the bias in the effect sizes of those variables showing strongest
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differences. This bias is not always present; some principles showing what factors
may lead to greater bias are given and a proof of the convergence of the bootstrap
distribution is provided.
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1. INTRODUCTION

Most considerations involving multiple comparisons problems focus upon the
increased probability of false positive errors when the null hypothesis is true. Here
the focus is upon the distorting effects of multiple comparisons in evaluating those
variables judged to show the strongest effects or differences between groups. These
distortions may be present both when the null hypothesis of no difference is true
as well as when it is false.

This bias can be relevant in some circumstances. If a power analysis is employed
for a follow-up study the study will likely be underpowered if overestimation bias is
present. Further, a follow-up study may be difficult to mount and the preliminary
study may provide the best point estimate and this estimate should be deflated if
bias is present. In genetic epidemiology marker studies there is sometimes interest
in assessing the strength of a marker’s association — if the strength is low it may
not be worth performing a fine-mapping or other follow-up study. Also, confidence
intervals for the point estimate will reflect the degree of bias affecting the estimate.

Further, the bias effect may help to explain apparent disagreement between

studies based on similar populations but independent samples, i.e. explaining
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some disagreement across studies. As an example the most differentially ex-
pressed gene in microarray study A is only the 500* or 1000"® most expressed
gene in microarray study B. Some may view such results as indicative of unreli-
able technology though the findings may arise from overestimation bias. Studies
of microarray platforms have proposed such ranking measures of comparability
(e.g. Irizarry et al., 2004) and not acknowledging this bias may lead to an overly
pessimistic assessment. Similar problems in validating effects of genetic markers
in confirmatory studies may also be due to multiple comparisons distortions.
Recent work by genetic epidemiologists (e.g. Sun and Bull, 2005 and Siegmund,
2002) has focused upon this bias problem in the context of estimating the pres-
ence and magnitude of genetic marker effects in genome-wide scans. The former
study examines bootstrap and cross-validation approaches similar to that pro-
posed here though in the present work more attention is paid to estimating the
entire distribution of overestimation and determining confidence intervals. The
latter reference puts forth an analytical approach that is highly dependent upon
the genetic model that is assumed and therefore appears to be restricted largely
to genetic marker studies. Also, both of these papers posit the overestimation
arises from truncation bias related to the significance threshold for declaring sig-
nificance — here a different presentation of bias is described and addressed that
is given without reference to a significance threshold. The basic idea is that
observed outcomes are composed of random and deterministic components and
under some circumstances the fact that one outcome performs best may suggest

the random component for that outcome was unusually beneficial and this 'good
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luck’ is associated with overestimation of the true effect. Determining when such
circumstances exists and measuring their distortion is the focus of this paper.
The use of the bootstrap to estimate confidence intervals for observed maximal
statistics is not new — see section 3.1 in Westfall and Young (1993) for creating
simultaneous confidence intervals. What is different here is the approach is used

to quantify and reduce overestimation bias.

2. ILLUSTRATIONS OF THE PROBLEM

An elementary two-group t—test applied to a number variables will be used to
illustrate some principles. A simple examination of gene expression differences
between healthy and diseased individuals could give rise to such a design.

We assume each of two groups has n individuals, a total of G variables (e.g.
genes) are measured, and for variable j we denote the n response measures as Xj;
in group 1 and Y;; in group 2 fori € {1...n}and j € {1...G}. Let d; = z; — y;,
o; denote the standard deviation under the assumption of common variability in

the two groups, and s; denote an estimate of o, i.e.

where z; and y; denote the two sample averages for variable j. If p; = EX;; —EY;

denotes the average difference for the j** variable then the ¢—statistic may be



written as
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7; is a realization of a random variable with a t—distribution having 2n—2 degrees
of freedom. The distinction between ¢ and 7 is that the latter has a t—distribution
(centered about 0) regardless of whether the null hypothesis, u; = 0, is true.
One sees in (2.4) that the degree to which the sample difference, Jj, exceeds
the true difference, p;, is associated with the magnitude of 7;. This degree of
overestimation expressed by 7; is of primary interest in this paper. Now consider
the collection of j € {1...G} variables and associated values t;, 7}, d;, and p,. Of
interest is the distribution of 7; when it corresponds to a gene with an extreme ¢;
value. Let ry,79,...,7g denote the indices associated with the smallest to largest

t—statistics so that

t1‘1 S tT‘z S e S t'I‘G (25)

It is difficult to know in general the distribution of

Vn (‘Zn - ,U'n) or 7. — Vn (CZTG - ,Urc)
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(2.6)

Tr, =

and hence the degree to which d,, underestimates y,, (or d, overestimates i)
though some simplified situations can reveal these distributions’ dependence on

different factors.



For example, consider a genechip with 30000 genes of which 2% are differentially
expressed between the two groups. For simplicity suppose that for these 2 percent
of the genes the same p and s values apply and the measures are independent

across genes. Then because

Vnp
v (2.7)

tj:Tj+

we see that ¢, corresponds to that gene with the highest 7; value. In this simplified
example and assuming the highest t—statistic corresponds to one of the 2% with
true differential expression, then this maximal value of 7; corresponds to the
maximum value among 600 independent and identically distributed ¢—statistics.
For n, the number of biological samples in each group, equal to 10 the expected

value of the maximum is about 3.64, i.e.

Vvn (drc - :“TG)

E [T"'G] =F \/53
reg

] = 3.64. (2.8)

If the true difference p in the 600 genes (perhaps measured on a log, scale) is 1
and the estimated standard deviation is also 1, then by manipulating (2.8) we see
that for the gene with greatest ¢; value the expected degree of overestimation is

on the order of

_ 1-v/2
E [dyy — pirs] & 3.647\/_ — 1.63 (2.9)

V10

where we have treated s,, and 7,, as if they were independent. Instead of the
true fold difference of 1 (doubling of gene expression), the reported fold difference
on average would closer to 2.63 (gene expression more than 6 times higher). In

this case the bias is profound.
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The preceding example has a simple structure that makes it easy to present but
has a number of approximations and assumptions that limit its generality and pro-
duce an extreme example of bias. A more realistic assessment of distortion may
be presented using real microarray data. Affymetrix hgul33A chips were used in a
spike-in experiment to assess different methods of generating expression measures
from probe level data (see http://affycomp.biostat.jhsph.edu/). The 28 arrays
(corresponding to the first 28 CEL files in hgul33spikein.tgz) were all hybridized
to a common mRNA source and the 42 spiked genes were excluded leaving 22258
genes for analysis. An additional 26 genes were excluded that showed high variabil-
ity and may have been correlated with the spiked genes. Preprocessing involved
running the justRMA procedure developed as part of the Bioconductor suite of
microarray analysis tools (see the Affy package at http://www.bioconductor.org).

The 28 arrays were randomly split into two groups of 14. By construction,
t—tests should show no differential expression for any genes. To investigate the
bias in effect size a random selection of 1.5% of the genes were chosen to receive
nonzero effect sizes and different effect sizes were allocated to these .015% 22232 ~
333 genes. The effect sizes were asymmetrically distributed about zero. This was
done because in many microarray studies differences will tend to more heavily
represent over- or under-expression. Further, the different patterns of over- and
under-estimation create different patterns of bias. Figure 1 shows the pattern of
effect sizes that was used. There were 55 effect sizes less than 0 with differences

of .20 units between the 6 most negative effect sizes (the remainder evenly spaced
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between -1 and 0) and there were 278 positive effect sizes (evenly distributed

between 0 and 2).

Effect Size

-2

0 50 100 150 200 250 300

FIGURE 1. Distribution of Nonzero Effect Sizes

After these nonzero effect sizes were imposed upon 333 randomly chosen genes,
22232 t—tests were then calculated for the adjusted arrays with to determine the
degree to which the genes with most extreme {—statistics overestimate the true
effect sizes. In other words, ¢,,,t,,,...,t,, were calculated and Z% was compared
to ;% and ﬁ:—g was compared to f:—g. Then a second simulation was performed
by rerandomizing the 28 arrays in 2 groups and choosing a new group of 333 to
receive the fixed pattern nonzero effect sizes and new estimates of overestimation
of ’;:—2 and underestimation of ’;% are obtained. These simulations were performed

1000 times and distributions of over- and underestimation are obtained and shown

in Figure 2. It is important to note that different genes (and hence different true
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effect sizes) corresponding to 7,, and 7,, may be selected in different simulations.

— Solid = True Effect Size —— Solid = True Effect Size
- Dotted = Estimated Effect Size --- Dotted = Estimated Effect Size

Density

Effect Size Effect Size

FIGURE 2. Left Panel: Distribution of True Effect Size ’;A and

71

Estimated Effect Size fi of Gene with Smallest ¢—statistic. Right
1

Panel: Distributions of True Effect Size ?—G and Estimated Effect

el

Size ‘:’—G of Gene with Largest t—statistic.
e’

We see the estimated effect sizes are more extreme than the true effect sizes. This

bias is more pronounced for ZLT—G than it is for L. The average estimated effect

TG 1
size is -2.24 for the most negative t—statistic while the average estimate is 2.90
for the most positive — both estimates are biased as the true effect sizes all lie

between -2 and 2. Another factor to notice is that the distribution of true effect

sizes for the smallest ¢t—statistic is more broad and includes some genes with 0
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effect size, i.e. in some simulations the gene producing the smallest ¢t—statistic
was one of the 22232-333 = 21899 with no differential expression.
Associated with this distribution of true and estimated effect sizes for the most

extreme t—statistics are the related distribution for 7,, and 7,, where

\/ﬁ (CZH - :url) \/ﬁ (JTG B MTG)
V25, V28,

These distributions (as derived from the simulations) are shown in Figure 3 along

Ty = and 7,, = (2.10)

with the usual ¢-distribution that is commonly used for inference about the genes

showing most extreme differences.

0.6

T, distribution

o —— t-distribution with 2n-2 d.f.
S ----- Ty, distribution
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FI1GURE 3. Distribution of 7,,, t with 2n — 2 d.f., and 7,

The figure shows the three distributions are quite distinct and suggests that
inference for p,, or p,, would be misleading if a standard ¢—distribution were

used. To illustrate, attention will be focused upon p,,. For these simulations



11

the median magnitude of the greatest positive estimated effect size, f:TG was 2.85.
el

Suppose in a particular fixed simulation p,, = 2.85 and s,, = 1 so an 22% = 7.21

change was associated with the largest t-statistic. The usual 95% confidence

interval for ., would be given by

dr, & @5,2”_2% = [2.07, 3.63] (2.11)
where t§%572n72 satisfies P[T < t5%5’2n72] = .975 where T has a t—distribution
with 2n — 2 degrees of freedom. This interval is highly suspect as by construction
the true effect size lies in [—2,2] and is likely near 2. To contrast this with
the distribution of 7, let F' denote the distribution of 7,, and let F, ' satisfy
Pr[r,, < F;'1 = a. To proceed further consider Fgy5 and Fy to generate a

95% confidence interval, i.e. find pu,, satisfying

Vvn (er - :“TG)
V2,

F0215 < S F§715 (2]‘2)

In this case the necessary percentiles may be estimated from the simulations,

Fos = 391, and Fy; = 1.41. Given the other parameters s,, = 1,d,, =

G

2.85,n = 14 the confidence interval for p,, may be given as

V2 V2

drg — Srg ng%, er—smﬁF@g = [1.37,2.32] (2.13)

Further, a point estimate may be computed using the median value F'5, as

Y

sTG\/_FE)Ol = 1.96. (2.14)
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One may compare this point estimate, 1.96, and confidence interval, [1.37,2.32],
with those estimates associated with the standard 95% t-distribution: point es-
timate of 2.85 and confidence interval of [2.07,3.63]. From the simulations one
can determine the true median effect size for the largest t—statistic is 1.87 so the
estimate and confidence interval based on 7,, comes relatively close to the truth
while the usual, naive estimate is badly biased.

In Figure 3 the distributions of 7, and 7., are quite different. That of 7,
appears similar in shape to that of a standard t—statistic with 2n — 2 = 26
degrees of freedom, though shifted somewhat to illustrate the underestimation
and with a block of data near -5 or -6 corresponding to those occasions in which
a gene with no true differential expression was chosen. The distribution of 7, is
substantially different from the ¢—distribution, both in location and shape.

As an aside it should be noted (data not provided) that for all but one of the
1000 simulations the p-value associated with the most positive t—statistic passed
Bonferroni criteria, i.e. p < .05/22232 and that the most extreme statistic did
correspond to one of the 333 genes with non-zero effect sizes. Given the conser-
vative nature of the Bonferroni threshold the associated genes would be selected
as differentially expressed by common multiple corrections criteria. This shows
that multiple comparisons are a problem not only when there is no differential
expression but can also create difficulty when differences exist.

One may raise the question of whether this overestimation and biased confidence

intervals matter. While this may be a qualitatively unimportant distinction the
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bias can be important in at least two situations: when a follow-up study is con-
sidered and a power analysis is based upon the initial estimates, and when one
compares results from one study with those obtained from an independent group
of arrays.

With respect to a power analysis, consider a second set of simulations of a
similar structure except the effect sizes are chosen to lie between [—1,1] and 3%
of genes are differentially expressed (the first set of simulations used [—2, 2] as the
effect size region and only 1.5% of genes were differentially expressed). The same
pattern of differences were used except a) the nonzero effect sizes were all divided
by 2 and b) there were two genes having each of the distinct effect sizes creating
666 genes with differential expression instead of 333.

In this case the average value of 7,, was 2.06 and the average true effect size
generating 7,, was 0.78. A power analysis based on an effect size of 2.06 would
suggest only 5 arrays/assays per group to achieve power of 80% using a two-sided
t-test with @ = 0.05 without any correction for multiple comparisons (this may
be appropriate in the context of follow-up study of a targeted gene). However,
even if the investigator chose to double this estimate and use 10 per group due
to parameter uncertainty, the true average absolute effect size of 0.78 suggests
that at least 27 per group would be needed to obtain power of 80%. In such
circumstances the failure of a follow-up study to show significant results is largely

a result of overestimation bias rather than lack of a true effect.
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3. ESTIMATION OF THE 7,, DISTRIBUTION

As pi,, is unknown, one cannot directly estimate the distribution of

_ Vvn (CZTG - :“TG)
¢ V2s,,

Tr

(3.15)

The bootstrap techniques popularized by Efron (e.g. Efron and Tibshirani, 1998)
will be used to develop confidence intervals that compensate for the multiple
comparisons bias described in the previous section. To proceed one first constructs

a bootstrap sample from the Xj;, Y;; by sampling arrays with replacement from

these data in a stratified manner, i.e. sampling from the X;; and Y;; separately. To
preserve the within-array correlation structure, one samples entire arrays, not the

individual genes. From here one obtains bootstrap samples X}; and Y;; and can

compute associated bootstrap statistics CZ;T, s7, and t7. For a particular bootstrap

sample designated by the * superscript, let 77,73, ..., rg order the ¢ statistics, ¢7,

1.e.
Vi (&, —dy)
V2s;.

or any other ordered 7* of interest. One may produce and process many

tyr <ty < <t . Then compute 77 = (3.16)

or 7
T1%
bootstrap samples in this way and obtain an empirical distribution of T;**G. The
hope is that the unknown distribution of 7, , may be approximated by that of T:a.
In considering the terms
. \/ﬁ (J'I‘G - N’rc) and 7. — \/ﬁ (dT& o dTé)
¢ V2 Sra e V2 8:&

Tr

(3.17)

the idea is that the degree to which d,, exceeds y,, can be approximated by the

degree to which d*. exceeds d,-. In other words, r is treated like r¢, d,- like
g Ta el G G
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Hre, and J:E: like d,,. Once an empirical distribution of 77 is obtained, denoted
by F*, one may use the percentiles, F*~! to create confidence intervals for y,, as

before, e.g.

\/ﬁ (dTG B IU’TG)

< ol 3.18
\/§er — £ .975 ( )

Ure satisfying | F,s <

where JTG and s,, are observed from the original data. For this procedure a
second order bootstrap is also employed to improve the approximation of F~! by
F*~1. This involves creating a further number of bootstrap samples and associated
statistics from each first level bootstrap sample. Details of this nested percentile
approach and an R program implementing it are available at http://krisa.ninds.
nih.gov/multcomps.

Table 1 indicates how this approach works in terms of confidence intervals for
Hr, in a simulation context. As before there are 14 individuals of each type.
Instead of considering 22232 genes the simulations involve only 2% =~ 444 in an
effort to keep the run-time manageable. Each of the 444 genes has an effect size
chosen from the set {2/444,4/444, ... 886/444,888/444} and the genes/variables
were constructed as independent. Values of JTG and p,, were obtained from
each simulation. Further the two-stage bootstrap algorithm was implemented
and confidence intervals of varying nominal coverage were constructed. Table
1 gives characteristics of the coverage of these bootstrap intervals and intervals
constructed using the naive t-statistic approach. The results show that the naive
t-statistic intervals fail to cover very often and the bootstrap approach is better.
Also worth noting is that the bootstrap intervals are about 20% longer. Though

wider, this is not the primary reason the bootstrap covers better — instead it is
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Nominal Bootstrap | t-statistic Average Average
Interval Coverage % | Coverage % | Bootstrap Length | t-statistic Length
25" — 75th 50% 3% A48 .39
10t — 90t 81% 12% .90 .75
5t — 95th 91% 22% 1.18 97
2.5 — 97.5h 96% 36% 1.42 1.17

TABLE 1. Confidence Interval Characteristics for p,, with n=14,
G=444, Effect Sizes Evenly spaced in (0, 2], Variables Independent,

1000 simulations

due to the overestimation correction as expanding the t—statistic regions by 20%
will increase the coverage probabilities to only 5%, 19%, 36%, and 55% for the
four different intervals.

A second set of simulations was run with a much smaller number of vari-
ables/genes. Here the interest is in demonstrating to what extent this remains
a problem in other applications when a more modest number of comparisons are
involved. For these simulations n = 14 for each group, there are G = 10 variables
(genes in the microarray context), the effect sizes are chosen at evenly spaced
intervals between 0 and 1. Table 2 provides confidence interval characteristics for
the bootstrap and t-statistic approaches. Here we see the naive approach performs
better though some distortion is still present. In this case the bootstrap intervals

are of comparable length with good coverage characteristics.
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Nominal Bootstrap | t-statistic Average Average

Interval Coverage % | Coverage % | Bootstrap Length | t-statistic Length

25t — 75th 49% 34% 0.49 0.48
10t — 90t 7% 54% 0.96 0.93
5th — g5th 88% 74% 1.25 1.21
2.5 — 975t 93% 84% 1.53 1.45

TABLE 2. Confidence Interval Characteristics for p,, with n=14,
G=10, Effect Sizes evenly spaced in (0, 1], Variables Independent,

1000 simulations

While the coverage probabilities of the bootstrap procedure appear accurate in
these two tables, some problems remain as the bootstrap estimates continue to

underestimate the bias. As an example, consider the interval

V2

F;51>d - TG\/*

Ry (3.19)

V2
[er Sro—— Jn

in for G = 444 in Table 1. While this has good empirical coverage of 50% the
coverage for the complementary intervals illustrates significant asymmetry. Specif-
ically, ideal coverage probabilities for

( 0, dy — er\\;__F%l) and (dm er\\;__FZE,l, ) (3.20)

are 25% but empirical coverage figures are asymmetric with empirical coverage
of 39% and 11% respectively. For G = 10 these subintervals are less asymmetric

with coverage of 28% and 23%, respectively. A more complete examination of
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Nominal Bootstrap | t-statistic Average Average

Interval Coverage % | Coverage % | Bootstrap Length | t-statistic Length

25t — 75t 48% 50% 0.52 0.51
10" — 90t 79% 78% 1.00 1.00
5th — 95th 89% 89% 1.32 1.27
2.5t — 975tk 94% 94% 1.61 1.54

TABLE 3. Confidence Interval Characteristics for p,, with n=14,
G=10, Effect Sizes are {3,0,0,0,0,0,0,0,0,0}, Variables Indepen-

dent, 1000 simulations

asymmetry for these two and other estimation methods (basic bootstrap and
bias-corrected bootstrap) are given in supplementary material on the website.

A third set of simulations (see Table 3) was run to show when overestimation
is not a problem the bootstrap approach yields coverage and confidence interval
lengths comparable to those produced by the naive approach. In these simulations
one of the 10 effect sizes was chosen to be 3 and the other 9 were set to 0. In
all 1000 simulations the variable with the large effect size generated the largest
t—statistic and in this case there was no overestimation problem.

From the data in Tables 1, 2, and 3 some generalizations may be drawn. First,
the naive estimate often performs badly — particularly as the number of vari-
ables/genes grows. The coverage probabilities in Table 1 give some indication of
how poorly the common naive approach performs under circumstances that may

not be atypical in a microarray context. Table 2 shows problems still remain for
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the naive approach when the number of variables is more manageable. In Ta-
ble 3 one sees that in some circumstances when there is little overestimation the
bootstrap and naive approaches perform appropriately and similarly.

These tables also indicate that while the bootstrap is an improvement, it is not
perfect. This evidence that in small samples some substantial underestimation
still exists may call into question whether the bootstrap is appropriate even when
the sample sizes are larger. Appendix A provides a justification for the procedure

in an asymptotic sense.

4. FACTORS THAT CONTRIBUTE TO BIAS

Tables 1, 2, and 3 indicate varying degrees of bias as illustrated by the perfor-
mance of the coverage characteristics of the naive t—statistic estimator. Some of
the factors that are most important in determining the extent of the problem are
1) n, the sample size, 2) G, the number of variables tested, and 3) the distribution
of the true effect sizes. Some would also include the level of p—value threshold that
is used to declare significance (e.g. Sun and Bull, 2005) but attention here will
be focused upon the first 3 factors. While truncating the distribution of 7 will
change its characteristics, the bias principally arises from multiple comparisons
rather than this truncation.

A more complete derivation of how these factors influence the bias is given
in Appendix B — here some of the conclusions are given. All else equal, 1) a
smaller sample size will be associated with more bias on average, 2) as the distance

between the most positive effect sizes declines, the more bias (for estimating y, )
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can be expected, and 3) the effect of increasing the number of genes is more
ambiguous, depending upon the distribution of effect sizes.

Below is illustrated the idea that bias tends to occur when there is more ‘com-
petition’ for the gene that can produce the most extreme t—statistic. In other
words, those situations when a large number of genes could conceivably produce
the largest t—statistic in repeated sampling from the underlying distribution are

associated with bias. To get a sense for why this should be the case we define the

terms 7%, 79, ..., rd to satisfy
0 0 0
Bri (Mg o Mg (4.21)
0,0 T Oy )
so the 7,79, ... 7% order the true effect sizes (recall ry,7s,...,rg order the ob-

served effect sizes).
Suppose in a particular sample at hand the largest ¢t—statistic is generated by
the variable with the 10" largest effect size, i.e. 7¢ = r3_4. Since tro, . exceeds

all other t—statistics this implies that

\/ﬁ 1721 g, .
T, o > Tyt NG S—j e : 2] forall j =710 ¢, 7% 4. rd 1 (4.22)

TG-9
where we have decomposed the t—statistic as was shown in (2.4). To the extent

that the s terms approximate the o terms we see

95 Tr_g

NG (% - Mrg,_9> _ (Hj My,

\/§ 8]' S..0 NG

~ >0forj=7r% ., ..., 4.23
o /2 >_ J G-8 G (4.23)

and the 7 terms all have an unconditional ¢—distribution centered about 0. Con-

sequently, for 7,0 to satisfy the inequalities expressed in (4.22) it is likely 7,0
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is positive if most of the inequalities in (4.23) are strict. Given that
\/ﬁ (dr%_g - Nr%_g)

0 = 4.24
&0 \/587%79 ( )

we see a positive value of Ty, Is associated with d,o  — overestimating fio .
Thus, occasions in which genes other than r¥ are associated with rg are times

when bias is more likely to occur.

5. CONCLUSION

There exists a bias related to multiple comparisons that arises because, in the
simple models given here, the observed ¢{—statistics, ¢;, are partially composed
of a random component 7;, a variable with a true ¢-distribution regardless of the
truth of the null hypothesis. When one chooses the variable with large observed
effect size, it is more likely there exists a large random component that leads
to an overestimation of the associated difference. This particular problem is not
alleviated by corrections made to address the number or proportion of Type I
errors. While multiple comparisons corrections and false discovery rate approaches
affect the choice of which variables may reflect significant changes, they do not
address distortions in the associated magnitudes of change. Such problems become
important when 1) an estimate of effect size is used to power a follow-up study, 2)
comparing results across different studies and finding discrepancies in the strength
of those variables showing greatest differences, 3) contemplating further action
based on initial study (e.g. follow-up fine-mapping study). Further, the traditional

confidence intervals may be badly biased in such circumstances.
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The hypothesis tests presented here are particularly simple — two-group ¢—tests.
More sophisticated discrimination methods may be less prone to these problems —
in particular those types of methods that pool error information across genes (e.g.
Limma approach of Smyth, 2004) may be associated with less overestimation
because there is less chance the s; terms in (2.4) are strongly underestimated.
The simple tests used here facilitated the use of simulations — especially those that
employed two levels of bootstrap resampling. However, it is likely that the general
phenomenon of overestimation and bias are present, though perhaps muted, when
other methods or statistics are used to detect differences.

The examples within this paper are microarray related; however as Table 2
demonstrates, the phenomenon is present in much more widespread applications
where the small sample size/many test problem is less pronounced. The results
indicate the bootstrap approach is able to distinguish instances when such bias
does an does not exist. Discussion of Tables 1 and 2 indicated that the bootstrap
approach used here could likely be improved — perhaps by considering transfor-
mations or alternative bootstrap methods. Other avenues of research may include
non-bootstrap approaches to the problem; however there is heavy dependence
upon the entire distribution of true effect sizes and as such any parametric ap-

proach would need to allow a great deal of flexibility in this respect.
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APPENDIX A: JUSTIFICATION OF THE BOOTSTRAP

A classic example of bootstrap failure occurs when one considers the maximum
of a series of observations and one may question whether something similar is
occurring in this context. Let Z1, Zs, ..., Z, be independently and identically dis-
tributed uniform random variables on the interval given by [0, #] with # unknown
and suppose confidence intervals for 6 are sought. Let T = max{Z1,...,Z,}.

Then it may be shown that

Q =n(@ —T)/0 — standard exponential distribution. (A.1)
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Now consider an obvious bootstrap procedure to elicit information regarding 6:
let t = observed T', T denote the maximum value observed in a bootstrap sample
of Z1,Zy,...,Z, and Q* = n(t — T*)/t. For the bootstrap procedure to work in
any meaningful way it should be the case that QQ* also converge to a standard
exponential distribution. However it is easy to see that if Z,) is in the bootstrap

sample we have Q* = 0. Further, bootstrap sampling with replacement implies

n—1

Prob(Q* = 0) = Prob(Z,) in bootstrap sample ) = 1— < -

>n — 632 (A.2)

Consequently the limiting distribution of @)* contains a point mass at 0 with
probability .632 so clearly the limiting distribution of )* cannot be exponential.
This problem does not arise in the context presented here (investigating the
distribution of 7,,) as the maximum is taken over G variables, the number of
which is fixed. In the failing example given above the maximum is taken over n
observations — an index that increases asymptotically.
To give a more formal justification of why the bootstrap is appropriate for this

overestimation problem we demonstrate that

Vi (d, = dry)
V2 Sry,

T = \/ﬁ (CZTG _ 'LLTG)

(A.3)

G

have the same asymptotic distribution, i.e. the bootstrap procedure works in at
least an asymptotic sense. As in (4.21) let 7%, 79, ... 7% order the true effect sizes.

To proceed further we will focus upon 7, in a simple and the common situation

that there exists a single variable/gene with maximal true effect size greater than
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all other effect sizes,

Hrg > 5 for all j # 2. (A.4)
O'T% g

Recall from (2.4) that

VL v (d; = 1)

=1+ where 7; = Ab
J J \/ﬁSj J \/ﬁSj ( )
so for j # r% we have
n o .
Pr [tro > tj] = Pr |70 + @ > 71+ v . (A.6)
¢ ¢ V2s0 V2 s,

From (A.4) and the realization that the 7 terms are governed by a t—distribution it

is clear the term 755 5; will dominate the inequality above so that with probability
el

1 t,0 will exceed t; as n — co. As this holds for all j # r¢; this implies r¢ — 7¢
with probability 1. From similar reasoning one can deduce that this behavior
also occurs in the bootstrap sample so that r;, — r¢ — rQ with probability
1 (assuming the number of bootstrap replications increases to oo with n). So,

because 7§ — & this implies

Vi (&, —dy) /i (dy — dig)
- = — 0 with probability 1, or (A7)

V2s}, \/58*%

(A.8)

* *
T,,.*G —>T7‘% —

\/53:0
G
For a fixed index, e.g. r%, it is well known that under general conditions the

bootstrap has appropriate asymptotic behavior (Bickel and Freedman, 1981), i.e.

Vvn (Jrg - :U’r%)
V25,0

*

NG (J;j% _ JT%)
T =
g \/55:0
G

(A.9)

and 7,0 =
G
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both converge weakly to a Gaussian distribution. From (A.8) and (A.9) this means
v (ds, — dvy)

T = converges in distribution to N (0, 1). (A.10)

T \/58:5

Similarly, because r¢ — r% with probability 1 this means

. . Vi (g, = ug)
Tre converges with probability 1 to 70 = (A.11)

V25,0

where the right hand term has a ¢—distribution and hence also converges to a
N(0,1) distribution. Consequently it has been demonstrated that both 77 and
T, have the same limiting distribution and thus the use of the bootstrap is justified

in an asymptotic sense.

APPENDIX B: CALCULATION OF THE BIAS

Here an effort is made to sketch the degree of bias that may be expected and link
this magnitude to some factors such as sample size, distribution of true effect sizes,
and the number of tests. Simplifying assumptions will be employed as necessary.
Here attention will be focused upon 7,, though analogous results hold for 7,,.
One may write

a
Elrel =Y Elnglra=jlPrc=j]. (B.1)
j=1

Then E[r,. |r¢ = j]Plre = j] = (/ T frjira=j (T) dT) Plre=j]  (B2)

_ foTj (Ta’rG :])d
Plrg = j]

= /Tij (r,7¢ = j)dt (B.4)

"Plra=34]  (B3)
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where f..|,,—; is the conditional distribution of 7; given rq = j and f,, (7,7¢ = j)

describes the joint distribution of 7; and the event r¢ = j.

Now r¢ = j if and only if ¢; > max tx (B.5)
j
: : Vn (Mk Nj>>
if and only if 7. > ma +—=—=-= . B.6
y if 77, > max (Tk V2 \se s, (B.6)

To simplify we will approximate the s; and s; terms by o; and o}. Then we obtain

Elr] :Z / rf, (ryre = §) dr (B.7)

/M rf (r)d ] (B3)

_ZE ]

where M_; =max (Tk + v (& - &)> (B.9)
k#j V2 \or o

f- denotes a t—distribution with 2n — 2 degrees of freedom and the expectation in
(B.8) is necessary because M_; contains random elements 74. To simplify further
we will approximate f, by a standard Gaussian distribution and assume the G

variables are independent. Then we may rewrite terms as

E[rq] = \/—ZE[ } (B.10)

From (B.10) one sees that bias is inversely related to the absolute value of the
M_; terms. Some consequences of this derivation are as follows.

Consider the effect of increasing the sample size holding all else constant. It
is worthwhile to examine M_; for the case when j = r% and j # rd separately

where we assume only one variable (with index r%) has the most positive effect
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size, i.e. there are no ties. Then

lim M_; =limmax (Tk + vn (ﬂ - &)> (B.11)

n—00 n  k#j \/5 Ok 0;
= -0 ifj=rd (B.12)
=00 if j # 1. (B.13)

In either case we have that M?; — oo so from (B.10) one sees E [7,,] = 0.

The case for expanding the differences among effect sizes is similar — at least
for the simplified example below. For a given pattern of effect sizes among the
G variables (again with no ties for the most extreme effect size), consider a new
pattern of effect sizes given by multiplying each original effect by a constant ¢ > 0.

Then if rY designates the most positive effect size

lim M_; =limmax (Tk + c@ (% - &)> (B.14)

c—00 c  k#j \/i Ok o
= -0 if j=1% (B.15)
=00 if j # 13 (B.16)

Consequently the same conclusion of no bias follows. If one reverses the limiting

action of ¢ so that ¢ — 0 from above then

lcliglM_j = 1;32;(7,6 (B.17)

where the 7, are identically and independently distributed ¢—statistics and the
bias is then positive. This situation corresponds to the situation of no variables

showing differential expression.
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The case for increasing G, the number of variables is less clear cut as it de-
pends upon the combination of effect sizes. As an example, suppose originally,
all true effect sizes are equal (either zero or not) — then there will be non-trivial
overestimation. If one additional variable is added that has a much larger effect
size then as demonstrated in Table 3 this may reduce or eliminate the bias. Then
if an additional variable is added with the same larger effect size some degree
of overestimation will then by reintroduced. Empirically it seems that adding
variables with effect sizes at or near the size of the largest preexisting effect sizes
exaggerates the bias effects for y,,. In terms of figuring the change of M_; terms
as above there is more ambiguity as some terms ij terms will likely increase,

others decrease, and some new terms will be introduced.



